
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

AQA Computer Science GCSE
3.4 Computer systems

Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

3.4.1 Hardware and software

What is hardware?

Hardware refers to the physical components of a computer system - the parts you can see
and touch.

Examples:

●​ CPU (Central Processing Unit)​

●​ RAM (Random Access Memory)​

●​ Hard drive or SSD​

●​ Keyboard, mouse, monitor​

●​ Motherboard, graphics card​

What is software?

Software is the program code that is executed by the hardware. It is a set of instructions that
controls the operations of the hardware.

The relationship between software and hardware

Software needs hardware to execute and function on. Hardware can’t function without
software to control it and tell it what to do.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.4.2 Boolean logic

What is Boolean logic?

Boolean logic is a form of algebra where all values are either TRUE (1) or FALSE (0). It is
used in computers to control decision-making and logical operations.

Computers use Boolean logic in:

●​ Programming conditions​

●​ Logic gates and circuits​

●​ Searching and filtering

Truth tables

A truth table is used to show the output of Boolean expressions for all possible input
combinations. This means that they are useful for debugging and understanding logic
conditions.

Logic gates
A computer’s processor is made up of billions of logic gates, devices which apply logical
operations to one or more Boolean inputs in order to produce a single output.

Within a processor, logic gates are combined to form logic circuits. These can perform more
complex operations like binary addition.

AND

●​ Returns TRUE only if both inputs are TRUE​

●​ Symbol: A AND B, A . B

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

OR

●​ Returns TRUE if either input is TRUE​

●​ Symbol: A OR B, A + B

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

XOR

●​ Returns TRUE if only one input is TRUE​

●​ Symbol: A XOR B, A ⊕ B

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

NOT

●​ Reverses the input​

●​ Symbol: NOT A, 𝐴

A NOT A

0 1

1 0

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Combining operators

You can combine logic gates and build expressions like:

A AND (B OR NOT C), A . (B +) 𝐶

Order of precedence
Algebraic operations have an order of precedence, meaning that some operations must be
applied before others. You may have met BODMAS in Mathematics, this is the same idea.

Operator Precedence

Brackets Highest
.
.
.
.

Lowest

NOT

AND

OR

For example, the expression B OR NOT C AND A would actually be carried out in the order
B OR ((NOT C) AND A).

Logic circuit symbols
Each of the four required logic gates has an internationally recognised symbol which you
should learn. The symbols have inputs on the left and outputs on the right.

NOT AND OR XOR

These symbols can be combined to form logic circuit diagrams.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Logic circuit diagrams
Logic gates can be combined to form more complex circuits. You may be asked to draw or
interpret a logic circuit involving multiple logic gates.

Example 1 - combining two AND gates

In this example, the output Q is TRUE only if A, B AND C are all TRUE.

The Boolean expression from this logic circuit is A AND B AND C.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Example 2 - a more complex circuit

In this example, A, B and C are the inputs, which could each be 0 or 1. Q is the output -
representing the result of the logic gates in their specific arrangement being applied to the
inputs.

If we were given the following inputs:

A B C

1 0 1

We can calculate the output, Q by writing the result of each logic gate next to it:

This gives the result that Q is TRUE (1).

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Boolean expression operators
In addition to logic gate symbols, the logic gates can also be represented using Boolean
expression symbols:

Gate Symbol

AND . (dot)

OR +

XOR ⊕

NOT 𝑂𝑣𝑒𝑟𝑏𝑎𝑟

For example the expression (A AND B) OR (NOT C) would be represented as:

 (𝐴. 𝐵) + 𝐶

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.4.3 Software classification

Software can be classified into two types:

1.​ System software​

2.​ Application software​

1. System software

System software manages and controls the computer hardware and acts as a platform to run
application software.

Examples:

●​ Operating Systems (OS): e.g. Windows, macOS, Linux​
The operating system handles management of the:

○​ Processor(s)
○​ Memory
○​ Input/output (I/O) devices
○​ Applications
○​ Security​

●​ Utility programs: e.g. antivirus, backup software​

Utility software are programs designed to help maintain, enhance, and troubleshoot a
computer system​

●​ Device drivers: allow OS to communicate with hardware​

●​ Firmware: built-in software controlling hardware (e.g. BIOS)​

2. Application software

Application software that performs specific tasks for the end-user.

Examples:

●​ Word processors (such as Microsoft Word)​

●​ Web browsers (such as Chrome, Firefox)​

●​ Games, media players, email clients​

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.4.4 Classification of programming languages and translators

Programming languages are used to write instructions that computers can execute. They fall
into two main categories:

●​ High-level languages (e.g. Python, Java, C#)​

●​ Low-level languages (e.g. Assembly language, Machine code)​

High-level languages

Designed for humans to read and write, with instructions that are similar to English (such as
print and while). Most computer programs are written using high-level languages.
Examples: Python, C#.

Advantages Disadvantages

Easy for humans to understand and debug
as the instructions are closer to English

Slower to execute than low-level languages

Programs written are portable between
different hardware, since they can be
translated into machine code for each
specific type of processor

Must be translated into machine code, and
this translated machine code can be less
efficient than if it was originally written as
machine code.

Low-level languages

Closer to machine code (binary). Examples: Assembly language, Machine code

Advantages Disadvantages

Faster and more efficient to execute Hard to read and write

Gives more control over hardware Not portable - specific to one type of
processor

Translators

Computers only understand machine code, so all programs written in high-level or assembly
languages must be translated before they can be executed. Machine code is expressed in
binary and is specific to a processor or family of processors.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Types of translators
There are three types of program translator: assemblers, compilers and interpreters.

Assemblers
An assembler translates assembly language into machine code. Because each assembly
language instruction has a 1:1 relationship to a machine code instruction, translation
between the two languages is fairly quick and straightforward. Assembly language is often
used to develop software for embedded systems and for controlling specific hardware
components. Assemblers are platform specific, meaning that a different assembler must
exist for each different type of processor instruction set.

Compliers
A compiler can be used to translate programs written in high-level languages like C# and
Python into machine code. Compilers take a high-level program as their source code, check
it for any errors and then translate the entire program at once. If the source code contains an
error, it will not be translated. Because compilers produce non-portable machine code, they
are said to be platform specific.

Once translated, a compiled program can be run without the requirement for any other
software to be present. This is not the case with interpreters.

Interpreters
An interpreter translates high-level languages into machine code and executes it line-by-line.
Interpreters do not generate machine code directly - they call appropriate machine code
subroutines within their own code to carry out statements.

Rather than checking for errors before translation begins (as a compiler does), interpreters
check for errors as they go. This means that a program with errors in can be partially
translated by an interpreter until the error is reached.

When a program is translated by an interpreter, both the program source code and the
interpreter itself must be present. This results in poor protection of the source code
compared to compilers which make the original code difficult to extract.

Comparison of compilers and interpreters
Compiler Interpreter

Checks source code for errors line-by-line
before beginning translation Translation begins immediately

Entire source code translated at once Each line is checked for errors and then
translated sequentially

No need for source code or compiler to be
present when the translated code is

executed

Both the source code and the interpreter
must be present when the program is

executed

Protects the source code from extraction Offers little protection of source code

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

3.4.5 Systems architecture

Purpose of the CPU
At the heart of every computer is a Central Processing Unit (CPU) which executes
instructions in order to run programs. Processors contain an arithmetic logic unit, a control
unit and numerous registers.

Major CPU components

Component Function

Arithmetic logic
unit

Performs mathematical calculations and logical operations as
required.

Control unit The control unit controls the operation of the fetch-decode-execute
cycle, synchronising the operation of the CPU and sending
commands to other components - for instance, requesting that the
arithmetic logic unit perform a calculation - via the buses.

Clock A device that sends a regular electrical signal which changes at a
regular frequency. This signal is used to synchronise the computer
system’s components; it influences the number of instructions
carried out each second.

Registers Fast-to-access storage locations, used to store small amounts of
data needed temporarily by the CPU during processing, such as the
current instruction being decoded or the result of calculations
performed by the arithmetic logic unit.

Bus A collection of wires through which data/signals are transmitted from
one component to another.

CPU performance factors

Factor Description

Clock speed With every tick of the clock, the CPU fetches and executes one
instruction. The greater the clock speed, the faster the CPU can
execute instructions.

Cache size Cache is a small, fast memory device located on the CPU that
stores frequently used data and instructions. A larger cache
reduces the need for the CPU to access slower main memory
(RAM) as often, improving performance.

Number of cores Cores are the individual processing units within a CPU. More cores
enable the CPU to handle multiple tasks in parallel (simultaneously)
provided the software being used allows it, making it faster.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

The fetch-decode-execute cycle
The fetch-decode-execute cycle is a continuous cycle performed by the processor. It
consists of three stages: fetch, decode and execute. This cycle repeats millions of times per
second.

1.​ Fetch: The next instruction is fetched from memory to the CPU.​

2.​ Decode: The control unit interprets the fetched instruction to determine what
operation needs to be performed.​

3.​ Execute: The instruction is carried out. Data required by the instruction may be
fetched from main memory, or the instruction may store a value in main memory.

Von Neumann architecture

Most modern CPUs follow the Von Neumann model, where instructions and data are stored
in the same memory, and one bus is used to transfer both.

Different types of memory within a computer
Memory (or primary storage) is where data and instructions are stored for quick access by
the CPU during program execution.

Memory type Description

RAM RAM stands for Random Access Memory, and it is a form of main
memory. RAM holds the data and instructions that the computer is
currently working with, such as the operating system, running
applications, and open documents. RAM is volatile, meaning its
contents are lost when the computer loses power (e.g., when turned
off).

ROM ROM stands for Read-Only Memory, and it is a form of main
memory. It is typically used to store firmware that is essential for the
computer to boot up and operate. As the name suggests, it is
read-only; it cannot be written to or modified during normal
operation. It is also non-volatile, meaning that it retains its contents
even when the power is off.

Cache The cache is fast-access memory located directly on the CPU, and
it stores frequently used data/instructions. This makes receiving
data/instructions from the computer’s memory more efficient.

Register Fast-to-access storage locations, used to store small amounts of
data needed by the CPU during processing, such as the current
instruction being decoded or the result of calculations performed by
the arithmetic logic unit.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Differences between main memory and secondary storage
Main memory encompasses all memory directly accessible by the CPU, excluding cache
and registers. This includes RAM (Random Access Memory) and ROM (Read-Only
Memory).

Secondary storage is considered to be any non-volatile storage mechanism not directly
accessible by the CPU. Secondary storage is needed so that data/files can be stored on a
long-term basis, using non-volatile storage so that they are retained when the computer is
switched off.

Types of secondary storage
Three types of secondary storage are solid-state, optical and magnetic.

Solid-state
Solid State Drives (SSDs) use electrical circuits to persistently store data. They don’t have
any moving parts, so are capable of far higher read and write speeds than magnetic HDDs
and are suitable for use in portable devices like phones and tablets.

Optical
Optical disks include CDs, DVDs and Blu-rays. They store information which can be read
optically by a laser.

The image below shows a microscope view of the surface of a read-only optical disk. The
stripes in the image are called pits, and the areas surrounding them are called lands. Pits
are burnt into the disk by a high-power laser which permanently deforms the surface.

When a laser is shone at the disk, the intensity of the reflected light is measured. The
continuation of a land/pit reflects light (representing a 0) whereas a transition between a land
and a pit scatters light (representing a 1).

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Magnetic
On a magnetic hard disk, binary data is represented by tiny magnetised regions, where the
magnetic orientation in one direction represents 0, and the other direction represents 1. Data
is written in concentric tracks, each of which is further divided into sectors.

When reading data the read/write head is moved to be over the correct track, and the disk
spins round. A whole sector is read in one go by the read/write head.

Comparison of secondary storage devices

 Hard-disk drive Solid-state drive Optical disk

Capacity High capacity. Relatively low capacity. Very low capacity.

Read / write
speeds Good speeds. Very high speeds. Relatively low speeds.

Portability
Bulky, heavy and

easily damaged by
movement.

Lightweight and rarely
damaged by movement.

Very small and
lightweight, can be

damaged by scratches
and dirt.

Durability Contains moving parts,
prone to damage

No moving parts, very
durable.

Easily scratched or
damaged.

Reliability Fairly reliable but
degrades over time. Very reliable. Less reliable - damage

affects data easily.

Cost Cheap per GB. Expensive per GB. Very cheap per disk,
but poor cost per GB.

Suitability Good for desktop PCs
and servers.

Good for laptops,
phones and tablets.

Good for sharing and
distributing small
volumes of data.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Cloud storage
Cloud storage allows users to store their files in a remote location, where magnetic and/or
solid state storage is used to store their files on their behalf. Several companies such as
Dropbox and Google Drive offer cloud storage as a service.

Advantages compared with local storage
●​ Enables users to access their data from more places and devices
●​ Parts of cloud storage can be made publicly available to others, enabling users to

share their data more easily
●​ The cost of computing devices can be made cheaper to users as there is no need for

as much built-in secondary storage

Disadvantages compared with local storage
●​ Cloud storage could potentially cost more in the long-term, as costs are typically

ongoing
●​ There are potential data privacy issues, as there is an increased chance of others

accessing personal data
●​ Relies on access to high-bandwidth network connection

Embedded systems
An embedded system is a computer system that is designed to perform specific, dedicated
functions within a larger mechanical or electronic system. It is “embedded” into a device to
control particular operations of that device.

How embedded systems differ from non-embedded systems
Embedded Systems:

●​ Designed for one specific task or set of related tasks
●​ Built into other devices and cannot easily be separated
●​ Have minimal or no user interface
●​ Optimised for efficiency and reliability

Non-Embedded Systems (General-purpose Computers):

●​ Can run many different applications and programs
●​ Standalone systems (like desktop computers, laptops)
●​ Have comprehensive user interfaces
●​ Software can be easily installed, removed, or updated
●​ Users can multitask between different applications
●​ Highly upgradeable and customisable
●​ Optimised for flexibility and performance

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Examples
Embedded Systems:

●​ Washing machines - embedded systems can control water temperature, cycle timing
and motor speed

●​ Microwave ovens - embedded systems can manage cooking time, power levels and
safety features

●​ Traffic lights - embedded systems can control timing sequences and respond to
sensors

Non-Embedded Systems (General-purpose Computers):
●​ Smartphones
●​ Laptops
●​ Desktop computers

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	What is hardware?
	Hardware refers to the physical components of a computer system - the parts you can see and touch.
	Examples:

	●​CPU (Central Processing Unit)​
	●​RAM (Random Access Memory)​
	●​Hard drive or SSD​
	●​Keyboard, mouse, monitor​
	●​Motherboard, graphics card​
	What is software?
	Software is the program code that is executed by the hardware. It is a set of instructions that controls the operations of the hardware.
	The relationship between software and hardware
	Software needs hardware to execute and function on. Hardware can’t function without software to control it and tell it what to do.
	
	
	What is Boolean logic?
	Truth tables
	Logic gates
	AND

	●​Returns TRUE only if both inputs are TRUE​
	●​Symbol: A AND B, A . B
	
	OR

	●​Returns TRUE if either input is TRUE​
	●​Symbol: A OR B, A + B
	
	XOR

	●​Returns TRUE if only one input is TRUE​
	●​Symbol: A XOR B, A ⊕ B
	NOT

	
	Combining operators
	You can combine logic gates and build expressions like:
	A AND (B OR NOT C), A . (B + 𝐶)
	Order of precedence

	Logic circuit symbols
	
	Logic circuit diagrams
	Example 1 - combining two AND gates
	
	Example 2 - a more complex circuit

	If we were given the following inputs:
	A
	B
	C
	1
	0
	1
	We can calculate the output, Q by writing the result of each logic gate next to it:
	This gives the result that Q is TRUE (1).
	
	Boolean expression operators
	Gate
	Symbol
	AND
	. (dot)
	OR
	+
	XOR
	⊕
	NOT
	𝑂𝑣𝑒𝑟𝑏𝑎𝑟
	For example the expression (A AND B) OR (NOT C) would be represented as:
	Software can be classified into two types:

	1.​System software​
	2.​Application software​
	1. System software
	System software manages and controls the computer hardware and acts as a platform to run application software.
	Examples:

	●​Operating Systems (OS): e.g. Windows, macOS, Linux​The operating system handles management of the:
	○​Processor(s)
	○​Memory
	○​Input/output (I/O) devices
	○​Applications
	○​Security​
	●​Utility programs: e.g. antivirus, backup software​Utility software are programs designed to help maintain, enhance, and troubleshoot a computer system​
	●​Device drivers: allow OS to communicate with hardware​
	●​Firmware: built-in software controlling hardware (e.g. BIOS)​
	2. Application software
	Application software that performs specific tasks for the end-user.
	Examples:

	●​Word processors (such as Microsoft Word)​
	●​Web browsers (such as Chrome, Firefox)​
	●​Games, media players, email clients​
	Programming languages are used to write instructions that computers can execute. They fall into two main categories:
	●​High-level languages (e.g. Python, Java, C#)​
	●​Low-level languages (e.g. Assembly language, Machine code)​
	High-level languages
	Designed for humans to read and write, with instructions that are similar to English (such as print and while). Most computer programs are written using high-level languages. Examples: Python, C#.
	Advantages
	Disadvantages

	Easy for humans to understand and debug as the instructions are closer to English
	Slower to execute than low-level languages
	Programs written are portable between different hardware, since they can be translated into machine code for each specific type of processor
	Must be translated into machine code, and this translated machine code can be less efficient than if it was originally written as machine code.
	
	Low-level languages
	Closer to machine code (binary). Examples: Assembly language, Machine code
	Advantages
	Disadvantages

	Faster and more efficient to execute
	Hard to read and write
	Gives more control over hardware
	Not portable - specific to one type of processor
	
	Translators
	Computers only understand machine code, so all programs written in high-level or assembly languages must be translated before they can be executed. Machine code is expressed in binary and is specific to a processor or family of processors.
	
	Types of translators
	Assemblers
	Compliers
	Interpreters

	Comparison of compilers and interpreters
	Purpose of the CPU
	Major CPU components
	Component
	Function
	Arithmetic logic unit
	Performs mathematical calculations and logical operations as required.
	Control unit
	The control unit controls the operation of the fetch-decode-execute cycle, synchronising the operation of the CPU and sending commands to other components - for instance, requesting that the arithmetic logic unit perform a calculation - via the buses.
	Clock
	Registers
	Fast-to-access storage locations, used to store small amounts of data needed temporarily by the CPU during processing, such as the current instruction being decoded or the result of calculations performed by the arithmetic logic unit.
	Bus
	A collection of wires through which data/signals are transmitted from one component to another.
	CPU performance factors
	Factor
	Description
	Clock speed
	With every tick of the clock, the CPU fetches and executes one instruction. The greater the clock speed, the faster the CPU can execute instructions.
	Cache size
	Cache is a small, fast memory device located on the CPU that stores frequently used data and instructions. A larger cache reduces the need for the CPU to access slower main memory (RAM) as often, improving performance.
	Number of cores
	Cores are the individual processing units within a CPU. More cores enable the CPU to handle multiple tasks in parallel (simultaneously) provided the software being used allows it, making it faster.
	The fetch-decode-execute cycle
	1.​Fetch: The next instruction is fetched from memory to the CPU.​
	2.​Decode: The control unit interprets the fetched instruction to determine what operation needs to be performed.​
	3.​Execute: The instruction is carried out. Data required by the instruction may be fetched from main memory, or the instruction may store a value in main memory.
	Von Neumann architecture
	Most modern CPUs follow the Von Neumann model, where instructions and data are stored in the same memory, and one bus is used to transfer both.
	Different types of memory within a computer
	Memory type
	Description
	RAM
	RAM stands for Random Access Memory, and it is a form of main memory. RAM holds the data and instructions that the computer is currently working with, such as the operating system, running applications, and open documents. RAM is volatile, meaning its contents are lost when the computer loses power (e.g., when turned off).
	ROM
	ROM stands for Read-Only Memory, and it is a form of main memory. It is typically used to store firmware that is essential for the computer to boot up and operate. As the name suggests, it is read-only; it cannot be written to or modified during normal operation. It is also non-volatile, meaning that it retains its contents even when the power is off.
	Cache
	The cache is fast-access memory located directly on the CPU, and it stores frequently used data/instructions. This makes receiving data/instructions from the computer’s memory more efficient.
	Register
	Fast-to-access storage locations, used to store small amounts of data needed by the CPU during processing, such as the current instruction being decoded or the result of calculations performed by the arithmetic logic unit.
	Differences between main memory and secondary storage
	Types of secondary storage
	Solid-state
	Optical
	Magnetic
	Comparison of secondary storage devices

	
	Cloud storage
	Advantages compared with local storage
	Disadvantages compared with local storage

	Embedded systems
	How embedded systems differ from non-embedded systems
	
	Examples

